publication . Article . 2021

High probability of yield gain through conservation agriculture in dry regions for major staple crops

Yang Su; Benoit Gabrielle; Damien Beillouin; David Makowski;
Open Access English
  • Published: 01 Dec 2021
  • Publisher: HAL CCSD
  • Country: France
Abstract
<jats:title>Abstract</jats:title><jats:p>Conservation agriculture (CA) has been promoted to mitigate climate change, reduce soil erosion, and provide a variety of ecosystem services. Yet, its impacts on crop yields remains controversial. To gain further insight, we mapped the probability of yield gain when switching from conventional tillage systems (CT) to CA worldwide. Relative yield changes were estimated with machine learning algorithms trained by 4403 paired yield observations on 8 crop species extracted from 413 publications. CA has better productive performance than no-till system (NT), and it stands a more than 50% chance to outperform CT in dryer region...
Persistent Identifiers
Subjects
free text keywords: [MATH.MATH-ST]Mathematics [math]/Statistics [math.ST], [SDV.SA.AGRO]Life Sciences [q-bio]/Agricultural sciences/Agronomy, Article, Climate-change mitigation, Climate-change adaptation, Agroecology, F08 - Systèmes et modes de culture, F07 - Façons culturales, F01 - Culture des plantes, agriculture de conservation, Augmentation de rendement, Rendement des cultures, Zone aride, Évaluation de l'impact, Performance de culture, apprentissage machine, Plante de culture, http://aims.fao.org/aos/agrovoc/c_264f7edd, http://aims.fao.org/aos/agrovoc/c_8487, http://aims.fao.org/aos/agrovoc/c_10176, http://aims.fao.org/aos/agrovoc/c_613, http://aims.fao.org/aos/agrovoc/c_37938, http://aims.fao.org/aos/agrovoc/c_35199, http://aims.fao.org/aos/agrovoc/c_49834, http://aims.fao.org/aos/agrovoc/c_1972, Multidisciplinary, Agriculture, business.industry, business, Erosion, Ecosystem services, Crop, Agroforestry, Climate change, Conservation agriculture, Crop yield, Environmental science, Conventional tillage, lcsh:Medicine, lcsh:R, lcsh:Science, lcsh:Q
Funded by
ANR| CLAND
Project
CLAND
CLAND : Changement climatique et usage des terres
  • Funder: French National Research Agency (ANR) (ANR)
  • Project Code: ANR-16-CONV-0003
Communities
Agricultural and Food Sciences
Rural Digital Europe
51 references, page 1 of 4

1. Pittelkow, C. M. et al. When does no-till yield more? A global meta-analysis. Field Crops Res. 183, 156-168 (2015).

2. Food and Agriculture Organization of the United Nations (FAO). Save and Grow: A Policymaker's Guide to the Sustainable Intensification of Smallholder Crop Production (2013). http://www.fao.org/3/a-i2215e.pdf.

3. Michler, J. D., Baylis, K., Arends-Kuenning, M. & Mazvimavi, K. Conservation agriculture and climate resilience. J. Environ. Econom. Manage. 93, 148-169 (2019).

4. Page, K. L., Dang, Y. P. & Dalal, R. C. The ability of conservation agriculture to conserve soil organic carbon and the subsequent impact on soil physical, chemical, and biological properties and yield. Front. Sustain. Food Syst. https://doi.org/10.3389/fsufs .2020.00031 (2020).

5. Farooq, M. & Siddique, K. H. M. Conservation Agriculture (Springer, Berlin, 2015).

6. Holland, J. M. eTh environmental consequences of adopting conservation tillage in Europe: Reviewing the evidence. Agric. Ecosyst. Environ. 103, 1-25 (2004).

7. Govaerts, B. et al. Infiltration, soil moisture, root rot and nematode populations aeftr 12 years of diefrent tillage, residue and crop rotation managements. Soil Tillage Res. 94, 209-219 (2007).

8. Zhang, W., Zheng, C., Song, Z., Deng, A. & He, Z. Farming systems in China: Innovations for sustainable crop production. In Crop Physiology (eds Zhang, W. et al.) 43-64 (Elsevier, Amsterdam, 2015).

9. Pittelkow, C. M. et al. Productivity limits and potentials of the principles of conservation agriculture. Nature 517, 365-368 (2015).

10. Scopel, E. et al. Conservation agriculture cropping systems in temperate and tropical conditions, performances and impacts. A review. Agron. Sustain. Dev. 33, 113-130 (2013).

11. Steward, P. R. et al. The adaptive capacity of maize-based conservation agriculture systems to climate stress in tropical and sub - tropical environments: A meta-regression of yields. Agric. Ecosyst. Environ. 251, 194-202 (2018).

12. Knapp, S. & van der Heijden, M. G. A. A global meta-analysis of yield stability in organic and conservation agriculture. Nat. Commun. 9, 1-9 (2018).

13. Laborde, J. P., Wortmann, C. S., Blanco-Canqui, H., Baigorria, G. A. & Lindquist, J. L. Identifying the drivers and predicting the outcome of conservation agriculture globally. Agric. Syst. 177, 102692. https://doi.org/10.1016/j.agsy.2019.102692 (2020).

14. Su, Y., Gabrielle, B. & Makowski, D. A global dataset for crop production under conventional tillage and no tillage practice. Figshare. https://doi.org/10.6084/m9.figsh are.12155553 (2020).

15. Su, Y., Gabrielle, B. & Makowski, D. A global dataset for crop production under conventional tillage and no tillage systems. Sci. Data 8, 33. https://doi.org/10.1038/s41597-021-00817-x (2021).

51 references, page 1 of 4
Any information missing or wrong?Report an Issue